Code No: RT22055

II B. Tech II Semester Supplementary Examinations, Dec/Jan-2015-16 FORMAL LANGUAGE AND AUTOMATA THEORY

(Computer Science and Engineering)

Time: 3 hours

Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

2. Answer ALL the question in Part-A

3. Answer any **THREE** Questions from **Part-B**

PART-A

- 1. a) Write a short note on Mathematical representation of Finite State Machine?
 - b) List out the properties of recursive enumerable language?
 - c) Draw the NFA accepting the set of all strings whose second symbol from last is 1?
 - d) Construct a regular grammar for L={ $0^{n}11|n \ge 1$ }?
 - e) List and explain four components used to form a context free grammar?
 - f) Define P and NP? Give some examples that fall into the class of P and NP?

(3M+4M+4M+4M+3M)

PART-B

- Design a Finite State Machine (FSM) that will take an arbitrary-sized integer as input, one bit at a time (starting from most significant bit), and return the remainder after this integer is divided by 3.
- 3. a) Show that every context sensitive language is recursive?
 b) Find the language generated by context sensitive language G={V,T,P,S} where the production P={S->aSBlabc, bB->bbc,cB->Bc} (8M+8M)
- 4. Construct a Deterministic Finite State Automata equivalent to the NFA given below $M=\{(q_0,q_1,q_2), \{a,b\}, \delta, q_0, \{\underline{q}_2\}\}$ where δ is defined by the following transition table (16M)

δ	0	1
\mathbf{q}_0	(q_0, q_1, q_2)	(q ₂)
q_1	(q ₀)	(q ₁)
q ₂	null	(q_0, q_1)

- 5. a) Construct a Finite Automata equivalence to the regular expression (0+1)*(00+11)(0+1)*?
 b) Construct a NFA equivalent to the regular expression (10+11)*00. (8M+8M)
- a) Construct equivalent grammar in Chomsky Normal Form for the grammar G=({S,A,B, {a,b}, S->aAbB, A->aA/a, B->bB/b },S}
 b) List and explain the Properties for Equivalence of Moore and Mealy Machines? (10M+6M)
- 7. Define Turing Machine and design it to recognize the language $L = \{ 0^n 1^n | n \ge 1 \}$. Illustrate the action of turing machine in accepting the word $0^3 1^3$ (16M)

